Efficient Kernel Discriminant Analysis via QR Decomposition
نویسندگان
چکیده
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications such as face recognition. Recently, a novel LDA algorithm based on QR Decomposition, namely LDA/QR, has been proposed, which is competitive in terms of classification accuracy with other LDA algorithms, but it has much lower costs in time and space. However, LDA/QR is based on linear projection, which may not be suitable for data with nonlinear structure. This paper first proposes an algorithm called KDA/QR, which extends the LDA/QR algorithm to deal with nonlinear data by using the kernel operator. Then an efficient approximation of KDA/QR called AKDA/QR is proposed. Experiments on face image data show that the classification accuracy of both KDA/QR and AKDA/QR are competitive with Generalized Discriminant Analysis (GDA), a general kernel discriminant analysis algorithm, while AKDA/QR has much lower time and space costs.
منابع مشابه
Kernel-based Weighted Discriminant Analysis with QR Decomposition and Its Application to Face Recognition
Kernel discriminant analysis (KDA) is a widely used approach in feature extraction problems. However, for high-dimensional multi-class tasks, such as faces recognition, traditional KDA algorithms have a limitation that the Fisher criterion is non-optimal with respect to classification rate. Moreover, they suffer from the small sample size problem. This paper presents two variants of KDA called ...
متن کاملA practical application of kernel-based fuzzy discriminant analysis
A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variant...
متن کاملAn Efficient Pseudoinverse Linear Discriminant Analysis method for Face Recognition
Pseudoinverse Linear Discriminant Analysis (PLDA) is a classical and pioneer method that deals with the Small Sample Size (SSS) problem in LDA when applied to such application as face recognition. However, it is expensive in computation and storage due to manipulating on extremely large d × d matrices, where d is the dimensionality of the sample image. As a result, although frequently cited in ...
متن کاملDiscriminant Kernel Learning Discriminant Kernel Learning via Convex Programming
Regularized Kernel Discriminant Analysis (RKDA) performs linear discriminant analysis in the feature space via the kernel trick. Its performance depends on the selection of kernels. We show that this kernel learning problem can be formulated as a semidefinite program (SDP). Based on the equivalence relationship between RKDA and least square problems in the binary-class case, we propose an effic...
متن کاملEquivalence Between LDA/QR and Direct LDA
Singularity problems of scatter matrices in Linear Discriminant Analysis (LDA) are challenging and have obtained attention during the last decade. Linear Discriminant Analysis via QR decomposition (LDA/QR) and Direct Linear Discriminant analysis (DLDA) are two popular algorithms to solve the singularity problem. This paper establishes the equivalent relationship between LDA/QR and DLDA. They ca...
متن کامل